Factored MLLR Adaptation for Singing Voice Generation

نویسندگان

  • June Sig Sung
  • Doo Hwa Hong
  • Shin Jae Kang
  • Nam Soo Kim
چکیده

In our previous study, we proposed factored MLLR (FMLLR) where each MLLR parameter is defined as a function of a control vector. We presented a method to train the FMLLR parameters based on a general framework of the expectationmaximization (EM) algorithm. In this paper, we extend the FMLLR structure from diagonal to unrestricted full matrix with a sophisticated algorithm for the training of relevant parameters. In the experiments on artificial generation of singing voice, we evaluate the performance of the FMLLR technique with two matrix structures and also compare with other approaches to parameter adaptation in HMM-based speech synthesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factored maximum likelihood kernelized regression for HMM-based singing voice synthesis

In our previous work, we proposed factored maximum likelihood linear regression (FMLLR) adaptation where each MLLR parameter is defined as a function of a control vector. In this paper, we introduce a novel technique called factored maximum likelihood kernelized regression (FMLKR) for HMMbased style adaptive speech synthesis. In FMLKR, nonlinear regression between the mean vector of the base mo...

متن کامل

Factored Mllr Adaptation for Hmm-based Expressive Speech Synthesis

One of the most popular approaches to parameter adaptation in hidden Markov model (HMM) based systems is the maximum likelihood linear regression (MLLR) technique. In our previous work, we proposed factored MLLR (FMLLR) where MLLR parameter is defined as a function of a control parameter vector. We presented a method to train the FMLLR parameters based on a general framework of the expectationm...

متن کامل

Factored MLLR Adaptation Algorithm for HMM-based Expressive TTS

One of the most popular approaches to parameter adaptation in hidden Markov model (HMM) based systems is the maximum likelihood linear regression (MLLR) technique. In our previous work, we proposed factored MLLR (FMLLR) where an MLLR parameter is defined as a function of a control parameter vector. We presented a method to train the FMLLR parameters based on a general framework of the expectati...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011